Mrs. Logan Advanced Math Week 26: February 26-March 1					
Module 6: Probability and Statistics Topic C: Random Sampling Topic D: Comparing Probabilities					
	Monday February 26th	Tuesday February 27th	Wednesday February 28th	Thursday February 29th	Friday March 1st
Lesson	Lesson 14: Sampling Variability when Estimating a Population Proportion	Module 6 Topic C Quiz	Lesson 15: Comparing Sample Means	Lesson 16: Comparing Populations Means	Lesson 17: Memory Games
Pages	213-225	147-225	229-240	241-257	259-268
We will...	look at what impact sample size has on sampling variability.	infer population characteristics from sample statistics.	determine when sample means are likely different due to sampling variability that reults from chance alone or due varying population means.	explore whether there is enough evidene to suggest that a difference in sample means describes a difference in population means.	determine whether two population means differ from each other by using data from samples.
Bell Ringer	Sample and Population Proportions	Quiz Prep	Calculate Sample Means	Conclusions from Sample Data	Emojis
Exit Ticket	Sampling Distribution	Quiz Feedback	Determining Differences	Variability	Enough Evidence?
I will...	observe that increasing the sample size decreases the sampling variability of the sample proportion.	solve real world problems regarding populations, samples and sampling variability.	determine whether there is convincing evidence to conclude that two population means differ based on sample estimates.	express the difference in sample means as a multiple of a measure of variability.	make conclusions about a difference in population means by using sample means and mean absolute deviations.
Reminders	Review of Lesson 14 and Study Guide in class.				
	7.SP.C.5Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.				
	7.SP.C.6Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.				
	7.SP.C.7.aDevelop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.				

7.SP.C.8.aUnderstand that, just as with simple events, the probability of a compound event is the fraction

State
7.SP.C.8.bRepresent sample spaces for compound events using methods such as organized lists, tables and tree diagrams.
7.SP.C.7.bDevelop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.
7.SP.C.8.cDesign and use a simulation to generate frequencies for compound events.
7.SP.B.3Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities using quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
7.SP.B.4Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.

